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Inversion identities for the self-dual Potts 
and Ashkin-Teller models 

Paul A Pearce 
Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 8 May 1987, in final form 3 J u l y  1987 

Abstract. The commuting diagonal-to-diagonal transfer matrices of the self-dual Potts and 
Ashkin-Teller models on  the square lattice are shown to satisfy special functional equations 
called inversion identities. These identities generalise the known local inversion or unitarity 
relations for interaction-round-a-face or I R F  models satisfying Yang-Baxter or star-triangle 
equations. 

1. Introduction 

It has recently been pointed out (Pearce 1987) that the commuting row-to-row transfer 
matrices of many exactly solvable interaction-round-a-face ( I R F )  models (Baxter 1982a) 
satisfy functional equations of a special form called inversion identities. These 
equations generalise the known local inversion or unitarity relations (Baxter 1982a, c). 
In this paper I will derive inversion identities for the commuting diagonal-to-diagonal 
transfer matrices of the self-dual, q-state Potts models (Potts 1952) and the self-dual 
Ashkin-Teller model (Ashkin and Teller 1943) on the square lattice. These results, 
together with the results discussed in Pearce (1987), strongly suggest that all I R F  models 
satisfying Yang-Baxter or star-triangle equations will possess inversion identities. 

Unlike the inversion relations, which they generalise, the inversion identities can 
be solved for the complete eigenvalue spectrum of the commuting transfer matrices, 
thus enabling the exact calculation of free energies, correlation lengths and interfacial 
tensions as well as many critical exponents and scaling dimensions. This work has 
been carried out for hard hexagons (Baxter and Pearce 1982), interacting hard squares 
(Baxter and Pearce 1983) and, most recently, magnetic hard squares (Pearce 1985, 
Pearce and Kim 1987). The methods of solving the inversion identities for the eigen- 
value spectra of the row-to-row transfer matrices developed in this series of papers 
will be applied to the Potts and Ashkin-Teller models in subsequent papers. It is 
expected that these equations will ultimately yield a complete analytic solution giving 
many new exact results and confirming directly many of the critical exponents which 
are believed to be known exactly from renormalisation group arguments (den Nijs 
1979, 1981, Knops 1980, Nienhuis 1984). The inversion identities for the Potts and 
Ashkin-Teller models are derived together here to point out their similarity and  to 
emphasise the scope of this approach. The inversion identity for the Potts models is 
derived in 9 2. The results for the Ashkin-Teller model are presented in § 3. 
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2. The self-dual Potts models 

The Hamiltonian of the square lattice Potts model is 

H = - J  C 6(u,, U j ) - - K  C 6(u,, g j )  
horiz \ e n  

where the sums are over the horizontal and vertical bonds of the lattice, each spin 
U, = 1 ,2 , .  . . , q can be in any of q allowed states and 

u = u ’  {; U f d  
8 ( u ,  U ’ )  = (2.2) 

is the usual Kronecker delta. The partition function can be written as 

Zh = ( p I p 2 ) - 2 ’  Tr( V u / ) ”  (2.3 

where V and W are qiv x q v  diagonal-to-diagonal transfer matrices with elements 

as shown in figure 1 with edge weights given by 

(2.4a 

(2.4b) 

The normalisation factors pI and p2 are arbitrary and periodic boundary conditions 
have been applied to the row configurations U and U’ so that U,$+,  = ul and = U ; .  

The transfer matrices V and W commute with the cyclic shift operator C with elements 

The Potts model cannot be solved in general, but it is exactly solvable (Baxter 1973, 
1982a, b)  on the self-dual manifold 

(eJ - l ) ( e K  - 1 )  = q. (2.7) 
For our purposes it is convenient to introduce the parameters 

2 cos A O s q ~ 4  

q’4 

w w2 { W, W2 W .  w2 
v W .  

1 2 3 

(2.8a) 

Figure 1. Three successive rows of the square lattice drawn diagonally, showing the 
diagonal-to-diagonal transfer matrices V and  W and the labelling of lattice sites. 
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and 

where 

sin U O c q s 4  
sinh U q>4. 

s ( u )  = ( 2 . 8 ~ )  

Setting SKIS  = A-’(e’ - 1) = A(eK - l ) - ’ ,  it then follows that the edge weights (2.4b) 
can be written as 

w , ( ~ ,  a f l ~ ) = ~ - ” ’ s + ~ ’ / 2 ~ _ s ( a ,  d ) =  w ( ~ ,  a ’ j ~ )  
( 2 . 9 ~ )  

W,(O,(T’~U)=A-’’’S.+A~’’SS(~,~’)= W(CT,CT’~A - U )  

where we have chosen 

p1 = A-‘l2s pz = A-’/’s_ p l p r  = A-’ss_ = (e’+K - l ) - ’ .  (2.9b) 

With this parametrisation, the elements of the diagonal-to-diagonal transfer matrix 
V ( u )  are entire functions of U, V(O)=Z, V ( A ) =  C - ’  and replacing U with A - U  

corresponds to interchanging J and K .  
With the above parametrisation, the edge weights of the self-dual Potts models 

possess two important local properties. The first of these is the local inversion (Baxter 
1982a, c) or  unitarity relations 

(2.10) 

The second local property, shown pictorially in figure 2, is the star-triangle relation 
(Baxter 1982a) 

1 w(fT, TIU) W(C’,  T / U ’ )  W(CT”, T l U ” )  
I 

= A W ( a ,  a ’ ( A  -U”) W(U’,  d / A  - U )  W((T”, a ( A  - U’) (2.11) 

where A is an  arbitrary constant and U + U’+ U ” =  A. Since the edge weights satisfy the 
star-triangle equations on the exact solution manifold (2.7) it follows (Baxter 1982a) 
that the transfer matrices V, W and C all commute with one another. 

a ” 

Figure 2. Pictorial representation of the star-triangle equations. The Boltzmann weights 
of the star (with central spin summed ou t )  and  the triangle are  equal for all U, U ’  a n d  U ”  
satisfying U + U ’ +  U ” =  A. 
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We will now show that the diagonal-to-diagonal transfer matrix V(  U )  satisfies the 
functional equation or inversion identity (Pearce 1987) 

V ( U ) V ( U + A ) C =  C#I(A + u ) ~ ( A  - u ) l +  ~ ( u ) P (  U )  ( 2 . 1 2 ~ )  

where C is the shift operator, Z is the q” x q ’ identity matrix, 

(2.126) 

and  P(u)  is an  auxiliary matrix that commutes with V ( u )  and whose elements are 
entire functions of U. 

First we observe (see figures 1 and 3) that 
N 

[ v ( u ) V ( u + A ) C I ~ . ,  = n X ( U , , U : )  * Y ( ~ , + I ,  u ~ + I )  ( 2 . 1 3 ~ )  
,=1 

where the dot or scalar products involve the q-dimensional vectors 

[ X ( a , U ’ ) ] , =  W(V, 7 1 U ) W ( T , U ’ I - U )  

[ ~ ( a ,  a’)]7 = ~ ( a ,  T ( A  - U )  W ( T ,  U’/A +U). 

[ X ( a ,  U ) l 2  = A8(a, T )  - A - ‘ S Z  

From ( 2 . 9 ~ )  it is readily found that 

[ Y ( a , ~ ) ] ~ = A - ’ s + s _ .  

Otherwise, if U # U‘, we have 

[ X ( U ,  U’)]-, = S S + ~ ( U ’ ,  7)  - s s - ~ ( u ,  T )  ---IS’ 

[Y(u, ( + ’ ) l r = S S + 8 ( U . ,  7)-.%-8(U’, T ) + A - ’ S + S - .  

In particular, using the identities 

S+ - S- = AS 
we find that, for U, # U; and u,+~ f U;+ ‘ ,  

s+s- = 1 - s Z  

x(U]? U ] )  ’ y(UJ+l ,  U j + ~ ) = ( s + S - ) 2  

X(U, ,  U; )  Y(u,+ ,  9 U,,,) = 0 

X ( O ; ,  a;) - Y ( u , + ~ ,  u ; + ~ )  = s2 x entire function of U. 

(2.136) 

(2.14a) 

(2.14b) 

(2.15) 

(2.16) 

Figure 3. Lattice segments corresponding to the vectors X ( a , ,  cr;) and  Y ( a , + ,  , gi+,) .  The 
scalar product is formed by summing out  the central spin.  
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Because of the periodic boundary conditions, it follows that the elements of 
V (  U )  V (  U + A ) C  fall into two categories: either a, = a: for all j (these are the diagonal 
elements), or else a, # a: for all j .  In  all cases we conclude that the elements of 
V (  U )  V (  U + A )  C are of the form given by the inversion identity (2.12) with the elements 
of P(u) entire functions of U. 

3. The self-dual Ashkin-Teller model 

The Hamiltonian of the square lattice Ashkin-Teller model that we consider is 

where the sums are over the horizontal and vertical bonds of the lattice and the Ising 
spins a, and b, take the values *l. For notational convenience we assign (Fan 1972a) 
a compound 4-state spin a, = ( a ! ,  b,) to each site i of the lattice. The partition function 
ZN can then again be written as in (2.3) with the 4, x 4N diagonal-to-diagonal transfer 
matrices V and W, as shown in figure 1, and defined by (2.4a). For the Ashkin-Teller 
model the edge weights are given by 

W,(a, a‘) = p ,  exp[J(aa’+ bb’)+J,aa’bb’] 

W2(a, a ’ ) = p z e x p [ K ( a a ’ + b b ’ ) +  K4aa’bb’]. 
(3.2) 

The normalisation factors p ,  and pz are at our disposal and periodic boundary 
conditions are applied to the row configurations a and a’ so that a N + ,  = U , ,  b,,, = b, , 
a&+,  = ai and b&+,  = b; .  The transfer matrices V and W = VC commute with the 
cyclic shift operator C now defined by (2.5) with 

S(a, a’) = S(a ,  a’)S(b, b’). (3.3) 
The exact solution manifold of the Ashkin-Teller model is a two-dimensional 

manifold, in the four-dimensional thermodynamic space spanned by the interactions 
J, K ,  J4 and K , ,  given by the constraints 

sinh 2 J4 sinh 2 K ,  
sinh 25 sinh 2K 

[exp(4J4) - l][exp(4K4) - 11 = A’. 

= A I 2  ~- - 

(3.4) 

By reversing the spins on one sublattice, if necessary, we can assume that A 3 0. As 
for the Potts model, it is convenient to introduce parameters A ,  s, s-, s, given by 

A = {  2 cos A O s A s 2  
2 cosh A A > 2  (3.5a) 

(3.5c) 
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In this instance we set s- = tanh 25 and s = tanh 2 K .  The edge weights (3 .2)  can then 
be written as 

Wl( a, ~ ’ I U )  = [(  1 + S) + s-(aa‘+ bb’)  + ( 1  - ~ ) ~ ~ ‘ b b ’ ] / 2 &  = W ( U ,  ~ ’ I U )  
W , ( ~ , a ‘ / u ) = [ ( l + s _ ) + s ( a a ’ + b b ‘ ) + ( l - ~ ~ ) ~ ~ ’ b b ‘ ] / 2 J Z =  W(o,a’lA - U )  

( 3 . 6 ~ )  

where we have chosen 

pl = (s/2)”’( 1 - s!)”, = 2T”2 exp 5, tanh 2K 

pz = ( s - / 2 ) ’ ” (  1 - s2) ’ j4  = 2-’” exp K ,  tanh 25 

p l p r  = 2 - ’ ( s s ~ ) ’ ’ ~ (  1 - s2)( 1 - st)”, = 2-’ exp(J,+ K,) tanh 25 tanh 2 K .  

Again this parametrisation ensures that the elements of the diagonal-to-diagonal 
transfer matrix V (  U )  are entire functions of U. In addition V ( 0 )  = I, V ( h )  = C - ’  and 
replacing U with A - U corresponds to interchanging 5, J4 with K,  K, respectively. The 
local inversion or unitarity relations take the form 

( 3 . 6 b )  

W,(a,  T / U ) w 1 ( T ,  g’(-U)=2S+S-6(cT, a’) 

(3.7)  
W2(a, a ’ l u )  W*(a, a’I - U )  = 2-’s+s_ .  

and, moreover, the star-triangle relations (2.1 1) are satisfied ensuring that the transfer 
matrices V, W and C all commute with one another. For the isotropic model (5 = K ,  
J4 = K4) we have U = X / 2  and 

(3 .8)  
which is the condition for self-duality (Fan  1972b, Baxter 1982a). 

We will now show that the diagonal-to-diagonal transfer matrix V ( u )  of the 
Ashkin-Teller model satisfies precisely the same inversion identity (2.12) as the Potts 
model. The elements of V (  U )  V (  U + A)C can be written as simple products as in (2 .13)  
with the four-dimensional vectors X ( a ,  a‘) = X ( a ,  b ;  a’, b’) and Y ( a ,  a’) = 
Y ( a ,  b;  a’, b’)  now given by (2 .13b)  and (3 .6a) .  Explicitly, it is found that 

exp( -25,) = sinh 25 

X ( a ,  b ;  a, b ) =  0 

s+s- 

b ( s + +  s-)/2 1 Y ( a ,  b;  a, b )  = U [ ]  
a b  

a(s ,  + s _ ) / 2  

Y ( u ,  b;  -U,  - b ) =  U 
abs 

0 

-ab  
Y ( u ,  b ;  -U,  b )  = U 

0 (s+ + s- ) / 2  
b s ( s +  + s - ) / 2  X ( U ,  b ;  U, - b ) = s U  Y ( u ,  b ;  U ,  - b )  = U 

(3.9)  
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where the column entries are in the order 7 = (+, +), (-, -), (-, +), (+, -) and U is 
a 4 x 4 orthogonal matrix given by the direct product 

(3.10) 

It can be seen immediately from the explicit form of the vectors X and Y that, for 
a, # a: and a,,, # a;,, , the scalar products again satisfy (2.16). Because of the periodic 
boundary conditions, it follows that the elements of V (  U )  V (  U + A)C fall into two 
categories: either a, = a: for all j (these are the diagonal elements), or else a, # a: for 
all j .  In all cases we conclude that the elements of V (  U )  V (  U + A)C are of the form 
given by the inversion identity (2.12) with the elements of P ( u )  entire functions of U. 
Thus it has been shown that, with the appropriate parametrisation, the diagonal-to- 
diagonal transfer matrices of both the self-dual Potts and Ashkin-Teller models satisfy 
the same inversion identity (2 .12) .  
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